
CHAPTER 4: 

TREES 

For large amounts of input, the linear access time of linked lists is 

prohibitive. In this chapter we look at a simple data structure for which the 

running time of most operations is O(log n) on average. We also sketch a 

conceptually simple modification to this data structure that guarantees the above 

time bound in the worst case and discuss a second modification that essentially 

gives an O(log n) running time per operation for a long sequence of instructions. 

The data structure that we are referring to is known as a binary search tree. 

Trees in general are very useful abstractions in computer science, so we will 

discuss their use in other, more general applications. In this chapter, we will  

 See how trees are used to implement the file system of several popular 

operating systems.  

 See how trees can be used to evaluate arithmetic expressions.  

 Show how to use trees to support searching operations in O(log n) average 

time, and how to refine these ideas to obtain O(log n) worst-case bounds. We will 

also see how to implement these operations when the data is stored on a disk.  

4.1. Preliminaries 

A tree can be defined in several ways. One natural way to define a tree is 

recursively. A tree is a collection of nodes. The collection can be empty, which 

is sometimes denoted as A. Otherwise, a tree consists of a distinguished node r, 

called the root, and zero or more (sub)trees T

1

, T

2

, . . . , T

k

, each of whose 

roots are connected by a directed edge to r.  

The root of each subtree is said to be a child of r, and r is the parent of each 

subtree root. Figure 4.1 shows a typical tree using the recursive definition.  

From the recursive definition, we find that a tree is a collection of n nodes, 

one of which is the root, and n - 1 edges. That there are n - 1 edges follows 

from the fact that each edge connects some node to its parent, and every node 

except the root has one parent (see Fig. 4.2).  
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Figure 4.1 Generic tree 

  

Figure 4.2 A tree 

In the tree of Figure 4.2, the root is A. Node F has A as a parent and K, L, and 

M as children. Each node may have an arbitrary number of children, possibly zero. 

Nodes with no children are known as leaves; the leaves in the tree above are B, 

C, H, I, P, Q, K, L, M, and N. Nodes with the same parent are siblings; thus K, 

L, and M are all siblings. Grandparent and grandchild relations can be defined in 

a similar manner.  

A path from node n

1

 to n

k

 is defined as a sequence of nodes n

1

, n

2

, . . . , n

k 

such that n

i

 is the parent of n

i+1

 for 1  i < k. The length of this path is 

the number of edges on the path, namely k -1. There is a path of length zero from 

every node to itself. Notice that in a tree there is exactly one path from the 

root to each node.  

For any node n

i

, the depth of n

i

 is the length of the unique path from the root 

to n

i

. Thus, the root is at depth 0. The height of n

i

 is the longest path from n

i

to a leaf. Thus all leaves are at height 0. The height of a tree is equal to the 

height of the root. For the tree in Figure 4.2, E is at depth 1 and height 2; F 

is at depth 1 and height 1; the height of the tree is 3. The depth of a tree is 

equal to the depth of the deepest leaf; this is always equal to the height of the 

tree.  

If there is a path from n

1

 to n

2

, then n

1

 is an ancestor of n

2

 and n

2

 is a 

descendant of n

1

. If n

1

  n

2

, then n

1

 is a proper ancestor of n

2

 and n

2

 is a 

proper descendant of n

1

.  

4.1.1. Implementation of Trees 

One way to implement a tree would be to have in each node, besides its data, a 

pointer to each child of the node. However, since the number of children per node 

can vary so greatly and is not known in advance, it might be infeasible to make 

the children direct links in the data structure, because there would be too much 

wasted space. The solution is simple: Keep the children of each node in a linked 

list of tree nodes. The declaration in Figure 4.3 is typical.  
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typedef struct tree_node *tree_ptr; 

struct tree_node 

{ 

element_type element; 

tree_ptr first_child; 

tree_ptr next_sibling; 

}; 

Figure 4.3 Node declarations for trees 

  

Figure 4.4 First child/next sibling representation of the tree shown in Figure 

4.2 

Figure 4.4 shows how a tree might be represented in this implementation. Arrows 

that point downward are first_child pointers. Arrows that go left to right are 

next_sibling pointers. Null pointers are not drawn, because there are too many.  

In the tree of Figure 4.4, node E has both a pointer to a sibling (F) and a 

pointer to a child (I), while some nodes have neither.  

4.1.2. Tree Traversals with an Application 

There are many applications for trees. One of the popular uses is the directory 

structure in many common operating systems, including UNIX, VAX/VMS, and DOS. 
Figure 4.5 is a typical directory in the UNIX file system.  

The root of this directory is /usr. (The asterisk next to the name indicates 

that /usr is itself a directory.) /usr has three children, mark, alex, and bill, 

which are themselves directories. Thus, /usr contains three directories and no 

regular files. The filename /usr/mark/book/ch1.r is obtained by following the 

leftmost child three times. Each / after the first indicates an edge; the result 

is the full pathname. This hierarchical file system is very popular, because it 

allows users to organize their data logically. Furthermore, two files in 

different directories can share the same name, because they must have different 

paths from the root and thus have different pathnames. A directory in the UNIX 
file system is just a file with a list of all its children, so the directories 
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are structured almost exactly in accordance with the type declaration above.

*

 

Indeed, if the normal command to print a file is applied to a directory, then the 

names of the files in the directory can be seen in the output (along with other 

non-ASCII information).  

*Each directory in the UNIX file system also has one entry that points to itself and another entry that 
points to the parent of the directory. Thus, technically, the UNIX file system is not a tree, but is 
treelike.  

  

Figure 4.5 Unix directory 

void 

list_directory ( Directory_or_file D ) 

{ 

list_dir ( D, 0 ); 

} 

void 

list_dir ( Directory_or_file D, unsigned int depth ) 

{ 

/*1*/        if ( D is a legitimate entry) 

{ 

/*2*/             print_name ( depth, D ); 

/*3*/             if( D is a directory ) 

/*4*/                  for each child, c, of D 

/*5*/                       list_dir( c, depth+1 ); 

} 

} 
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Figure 4.6 Routine to list a directory in a hierarchical file system 

Suppose we would like to list the names of all of the files in the directory. Our 

output format will be that files that are depth d will have their names indented 

by d tabs. Our algorithm is given in Figure 4.6.  

The heart of the algorithm is the recursive procedure list_dir. This routine 

needs to be started with the directory name and a depth of 0, to signify no 

indenting for the root. This depth is an internal bookkeeping variable, and is 

hardly a parameter that a calling routine should be expected to know about. Thus 

the driver routine list_directory is used to interface the recursive routine to 

the outside world.  

The logic of the algorithm is simple to follow. The argument to list_dir is some 

sort of pointer into the tree. As long as the pointer is valid, the name implied 

by the pointer is printed out with the appropriate number of tabs. If the entry 

is a directory, then we process all children recursively, one by one. These 

children are one level deeper, and thus need to be indented an extra space. The 

output is in Figure 4.7.  

This traversal strategy is known as a preorder traversal. In a preorder 

traversal, work at a node is performed before (pre) its children are processed. 

When this program is run, it is clear that line 2 is executed exactly once per 

node, since each name is output once. Since line 2 is executed at most once per 

node, line 3 must also be executed once per node. Furthermore, line 5 can be 

executed at most once for each child of each node. But the number of children is 

exactly one less than the number of nodes. Finally, the for loop iterates once 

per execution of line 5, plus once each time the loop ends. Each for loop 

terminates on a NULL pointer, but there is at most one of those per node. Thus, 

the total amount of work is constant per node. If there are n file names to be 

output, then the running time is O(n).  

/usr 

mark 

book 

chr1.c 

chr2.c 

chr3.c 

course 

cop3530 

fall88 

syl.r 

spr89 
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syl.r 

sum89 

syl.r 

junk.c 

alex 

junk.c 

bill 

work 

course 

cop3212 

fall88 

grades 

prog1.r 

prog2.r 

fall89 

prog1.r 

prog2.r 

grades 

Figure 4.7 The (preorder) directory listing 

Another common method of traversing a tree is the postorder traversal. In a 

postorder traversal, the work at a node is performed after (post) its children 

are evaluated. As an example, Figure 4.8 represents the same directory structure 

as before, with the numbers in parentheses representing the number of disk blocks 

taken up by each file.  

Since the directories are themselves files, they have sizes too. Suppose we would 

like to calculate the total number of blocks used by all the files in the tree. 

The most natural way to do this would be to find the number of blocks contained 

in the subdirectories /usr/mark (30), /usr/alex (9), and /usr/bill (32). The 

total number of blocks is then the total in the subdirectories (71) plus the one 

block used by /usr, for a total of 72. The function size_directory in Figure 4.9 

implements this strategy.  
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Figure 4.8 Unix directory with file sizes obtained via postorder traversal 

unsigned int 

size_directory( Directory_or_file D ) 

{ 

unsigned int total_size; 

/*1*/         total_size = 0; 

/*2*/         if( D is a legitimate entry) 

{ 

/*3*/              total_size = file_size( D ); 

/*4*/              if( D is a directory ) 

/*5*/                   for each child, c, of D 

/*6*/                        total_size += size_directory( c ); 

} 

/*7*/         return( total_size ); 

} 

Figure 4.9 Routine to calculate the size of a directory 

                ch1.r                3 

                ch2.r                2 

                ch3.r                4 

           book                     10 

                syl.r                1 

                     fall88          2 
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                syl.r                5 

                     spr89           6 

                syl.r                2 

                     sum89           3 

                cop3530             12 

           course                   13 

           junk.c                    6 

      mark                          30 

           junk.c                    8 

      alex                           9 

           work                      1 

                         grades      3 

                         prog1.r     4 

                         prog2.r     1 

                    fall88           9 

                         prog2.r     2 

                         prog1.r     7 

                         grades      9 

                    fall89          19 

               cop3212              29 

          course                    30 

     bill                           32 

/usr                                72 

Figure 4.10 Trace of the size function 

If D is not a directory, then size_directory merely returns the number of blocks 

used by D. Otherwise, the number of blocks used by D is added to the number of 

blocks (recursively) found in all of the children. To see the difference between 

the postorder traversal strategy and the preorder traversal strategy, Figure 4.10 

shows how the size of each directory or file is produced by the algorithm.  

4.2. Binary Trees 
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A binary tree is a tree in which no node can have more than two children.  

Figure 4.11 shows that a binary tree consists of a root and two subtrees, T

l 

and 

T

r,

 both of which could possibly be empty.  

A property of a binary tree that is sometimes important is that the depth of an 

average binary tree is considerably smaller than n. An analysis shows that the 

average depth is , and that for a special type of binary tree, namely the 

binary search tree, the average value of the depth is O(log n). Unfortunately, 

the depth can be as large as n -1, as the example in Figure 4.12 shows.  

  

Figure 4.11 Generic binary tree 

  

Figure 4.12 Worst-case binary tree 

4.2.1. Implementation 

Because a binary tree has at most two children, we can keep direct pointers to 

them. The declaration of tree nodes is similar in structure to that for doubly 

linked lists, in that a node is a structure consisting of the key information 

plus two pointers (left and right) to other nodes (see  

typedef struct tree_node *tree_ptr; 

struct tree_node 

{ 

element_type element; 
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tree_ptr left; 

tree_ptr right; 

}; 

typedef tree_ptr TREE; 

Figure 4.13 Binary tree node declarations 

Many of the rules that apply to linked lists will apply to trees as well. In 

particular, when an insertion is performed, a node will have to be created by a 

call to malloc. Nodes can be freed after deletion by calling free.  

We could draw the binary trees using the rectangular boxes that are customary for 

linked lists, but trees are generally drawn as circles connected by lines, 

because they are actually graphs. We also do not explicitly draw NULL pointers 

when referring to trees, because every binary tree with n nodes would require n + 

1 NULL pointers.  

Binary trees have many important uses not associated with searching. One of the 

principal uses of binary trees is in the area of compiler design, which we will 

now explore.  

4.2.2. Expression Trees 

Figure 4.14 shows an example of an expression tree. The leaves of an expression 

tree are operands, such as constants or variable names, and the other nodes 

contain operators. This particular tree happens to be binary, because all of the 

operations are binary, and although this is the simplest case, it is possible for 

nodes to have more than two children. It is also possible for a node to have only 

one child, as is the case with the unary minus operator. We can evaluate an 

expression tree, T, by applying the operator at the root to the values obtained 

by recursively evaluating the left and right subtrees. In our example, the left 

subtree evaluates to a + (b * c) and the right subtree evaluates to ((d *e) + f )

*g. The entire tree therefore represents (a + (b*c)) + (((d * e) + f)* g).  

We can produce an (overly parenthesized) infix expression by recursively 

producing a parenthesized left expression, then printing out the operator at the 

root, and finally recursively producing a parenthesized right expression. This 

general strattegy ( left, node, right ) is known as an inorder traversal; it is 

easy to remember because of the type of expression it produces.  

An alternate traversal strategy is to recursively print out the left subtree, the 

right subtree, and then the operator. If we apply this strategy to our tree 

above, the output is a b c * + d e * f + g * +, which is easily seen to be the 

postfix representation of Section 3.3.3. This traversal strategy is generally 

known as a postorder traversal. We have seen this traversal strategy earlier in 

Section 4.1.  
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Figure 4.14 Expression tree for (a + b * c) + ((d * e + f ) * g) 

A third traversal strategy is to print out the operator first and then 

recursively print out the left and right subtrees. The resulting expression, + + 

a * b c * + * d e f g, is the less useful prefix notation and the traversal 

strategy is a preorder traversal, which we have also seen earlier in Section 4.1. 

We will return to these traversal strategies once again later in the chapter.  

Constructing an Expression Tree 

We now give an algorithm to convert a postfix expression into an expression tree. 

Since we already have an algorithm to convert infix to postfix, we can generate 

expression trees from the two common types of input. The method we describe 

strongly resembles the postfix evaluation algorithm of Section 3.2.3. We read our 

expression one symbol at a time. If the symbol is an operand, we create a one-

node tree and push a pointer to it onto a stack. If the symbol is an operator, we 

pop pointers to two trees T

1

 and T

2

 from the stack (T

1

 is popped first) and form 

a new tree whose root is the operator and whose left and right children point to 

T

2

 and T

1

 respectively. A pointer to this new tree is then pushed onto the stack. 

As an example, suppose the input is  

a b + c d e + * * 

The first two symbols are operands, so we create one-node trees and push pointers 

to them onto a stack.*  

*For convenience, we will have the stack grow from left to right in the diagrams. 

  

Next, a '+' is read, so two pointers to trees are popped, a new tree is formed, 
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and a pointer to it is pushed onto the stack.*   

Next, c, d, and e are read, and for each a one-node tree is created and a pointer 

to the corresponding tree is pushed onto the stack.  

  

Now a '+' is read, so two trees are merged.  

  

Continuing, a '*' is read, so we pop two tree pointers and form a new tree with a 

'*' as root.  
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Finally, the last symbol is read, two trees are merged, and a pointer to the 

final tree is left on the stack.  

  

4.3. The Search Tree ADT-Binary Search 

Trees 

An important application of binary trees is their use in searching. Let us assume 

that each node in the tree is assigned a key value. In our examples, we will 

assume for simplicity that these are integers, although arbitrarily complex keys 

are allowed. We will also assume that all the keys are distinct, and deal with 

duplicates later.  

The property that makes a binary tree into a binary search tree is that for every 

node, X, in the tree, the values of all the keys in the left subtree are smaller 

than the key value in X, and the values of all the keys in the right subtree are 

larger than the key value in X. Notice that this implies that all the elements in 

the tree can be ordered in some consistent manner. In Figure 4.15, the tree on 

the left is a binary search tree, but the tree on the right is not. The tree on 

the right has a node with key 7 in the left subtree of a node with key 6 (which 
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happens to be the root).  

We now give brief descriptions of the operations that are usually performed on 

binary search trees. Note that because of the recursive definition of trees, it 

is common to write these routines recursively. Because the average depth of a 

binary search tree is O(log n), we generally do not need to worry about running 

out of stack space. We repeat our type definition in Figure 4.16. Since all the 

elements can be ordered, we will assume that the operators <, >, and = can be 

applied to them, even if this might be syntactically erroneous for some types.  

  

Figure 4.15 Two binary trees (only the left tree is a search tree) 

typedef struct tree_node *tree_ptr; 

struct tree_node 

{ 

element_type element; 

tree_ptr left; 

tree_ptr right; 

}; 

typedef tree_ptr SEARCH_TREE; 

Figure 4.16 Binary search tree declarations 

4.3.1. Make_null 

This operation is mainly for initialization. Some programmers prefer to 

initialize the first element as a one-node tree, but our implementation follows 

the recursive definition of trees more closely. It is also a simple routine, as 

evidenced by Figure 4.17.  

4.3.2. Find 

This operation generally requires returning a pointer to the node in tree T that 
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has key x, or NULL if there is no such node. The structure of the tree makes this 

simple. If T is , then we can just return . Otherwise, if the key stored at T is 

x, we can return T. Otherwise, we make a recursive call on a subtree of T, either 

left or right, depending on the relationship of x to the key stored in T. The 

code in Figure 4.18 is an implementation of this strategy.  

SEARCH_TREE 

make_null ( void ) 

{ 

return NULL; 

} 

Figure 4.17 Routine to make an empty tree 

tree_ptr 

find( element_type x, SEARCH_TREE T ) 

{ 

if( T == NULL ) 

return NULL; 

if( x < T->element ) 

return( find( x, T->left ) ); 

else 

if( x > T->element ) 

return( find( x, T->right ) ); 

else 

return T; 

} 

Figure 4.18 Find operation for binary search trees 

Notice the order of the tests. It is crucial that the test for an empty tree be 

performed first, since otherwise the indirections would be on a NULL pointer. The 

remaining tests are arranged with the least likely case last. Also note that both 

recursive calls are actually tail recursions and can be easily removed with an 

assignment and a goto. The use of tail recursion is justifiable here because the 

simplicity of algorithmic expression compensates for the decrease in speed, and 

the amount of stack space used is expected to be only O(log n).  

4.3.3. Find_min and find_max 
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These routines return the position of the smallest and largest elements in the 

tree, respectively. Although returning the exact values of these elements might 

seem more reasonable, this would be inconsistent with the find operation. It is 

important that similar-looking operations do similar things. To perform a 

find_min, start at the root and go left as long as there is a left child. The 

stopping point is the smallest element. The find_max routine is the same, except 

that branching is to the right child.  

This is so easy that many programmers do not bother using recursion. We will code 

the routines both ways by doing find_min recursively and find_max nonrecursively 

(see Figs. 4.19 and 4.20).  

Notice how we carefully handle the degenerate case of an empty tree. Although 

this is always important to do, it is especially crucial in recursive programs. 

Also notice that it is safe to change T in find_max, since we are only working 

with a copy. Always be extremely careful, however, because a statement such as T 

-> right : =T -> right -> right will make changes in most languages.  

tree_ptr 

find_min( SEARCH_TREE T ) 

{ 

if( T == NULL ) 

return NULL; 

else 

if( T->left == NULL ) 

return( T ); 

else 

return( find_min ( T->left ) ); 

} 

Figure 4.19 Recursive implementation of find_min for binary search trees 

tree_ptr 

find_max( SEARCH_TREE T ) 

{ 

if( T != NULL ) 

while( T->right != NULL ) 

T = T->right; 

return T; 
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} 

Figure 4.20 Nonrecursive implementation of find_max for binary search trees 

4.3.4. Insert 

The insertion routine is conceptually simple. To insert x into tree T, proceed 

down the tree as you would with a find. If x is found, do nothing (or "update" 

something). Otherwise, insert x at the last spot on the path traversed. Figure 

4.21 shows what happens. To insert 5, we traverse the tree as though a find were 

occurring. At the node with key 4, we need to go right, but there is no subtree, 

so 5 is not in the tree, and this is the correct spot.  

Duplicates can be handled by keeping an extra field in the node record indicating 

the frequency of occurrence. This adds some extra space to the entire tree, but 

is better than putting duplicates in the tree (which tends to make the tree very 

deep). Of course this strategy does not work if the key is only part of a larger 

record. If that is the case, then we can keep all of the records that have the 

same key in an auxiliary data structure, such as a list or another search tree.  

  

Figure 4.21 Binary search trees before and after inserting 5 

Figure 4.22 shows the code for the insertion routine. Since T points to the root 

of the tree, and the root changes on the first insertion, insert is written as a 

function that returns a pointer to the root of the new tree. Lines 8 and 10 

recursively insert and attach x into the appropriate subtree.  

tree_ptr 

insert( element_type x, SEARCH_TREE T ) 

{ 

/*1*/       if( T == NULL ) 

{  /* Create and return a one-node tree */ 

/*2*/            T = (SEARCH_TREE) malloc ( sizeof (struct tree_node) ); 

/*3*/            if( T == NULL ) 
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/*4*/                fatal_error("Out of space!!!"); 

else 

{ 

/*5*/                T->element = x; 

/*6*/                T->left = T->right = NULL; 

} 

} 

else 

/*7*/       if( x < T->element ) 

/*8*/            T->left = insert( x, T->left ); 

else 

/*9*/       if( x > T->element ) 

/*10*/           T->right = insert( x, T->right ); 

/* else x is in the tree already. We'll do nothing */ 

/*11*/      return T; /* Don't forget this line!! */ 

} 

Figure 4.22 Insertion into a binary search tree 

4.3.5. Delete 

As is common with many data structures, the hardest operation is deletion. Once 

we have found the node to be deleted, we need to consider several possibilities. 

If the node is a leaf, it can be deleted immediately. If the node has one child, 

the node can be deleted after its parent adjusts a pointer to bypass the node (we 

will draw the pointer directions explicitly for clarity). See Figure 4.23. Notice 

that the deleted node is now unreferenced and can be disposed of only if a 

pointer to it has been saved.  

The complicated case deals with a node with two children. The general strategy is 

to replace the key of this node with the smallest key of the right subtree (which 

is easily found) and recursively delete that node (which is now empty). Because 

the smallest node in the right subtree cannot have a left child, the second 

delete is an easy one. Figure 4.24 shows an initial tree and the result of a 

deletion. The node to be deleted is the left child of the root; the key value is 

2. It is replaced with the smallest key in its right subtree (3), and then that 

node is deleted as before.  
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Figure 4.23 Deletion of a node (4) with one child, before and after 

  

Figure 4.24 Deletion of a node (2) with two children, before and after 

The code in Figure 4.25 performs deletion. It is inefficient, because it makes 

two passes down the tree to find and delete the smallest node in the right 

subtree when this is appropriate. It is easy to remove this inefficiency, by 

writing a special delete_min function, and we have left it in only for 

simplicity.  

If the number of deletions is expected to be small, then a popular strategy to 

use is lazy deletion: When an element is to be deleted, it is left in the tree 

and merely marked as being deleted. This is especially popular if duplicate keys 

are present, because then the field that keeps count of the frequency of 

appearance can be decremented. If the number of real nodes in the tree is the 

same as the number of "deleted" nodes, then the depth of the tree is only 

expected to go up by a small constant (why?), so there is a very small time 

penalty associated with lazy deletion. Also, if a deleted key is reinserted, the 

overhead of allocating a new cell is avoided.  

tree_ptr 

delete( element_type x, SEARCH_TREE T ) 

{ 
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tree_ptr tmp_cell, child; 

if( T == NULL ) 

error("Element not found"); 

else 

if( x < T->element )  /* Go left */ 

T->left = delete( x, T->left ); 

else 

if( x > T->element )  /* Go right */ 

T->right = delete( x, T->right ); 

else      /* Found element to be deleted */ 

if( T->left && T->right )  /* Two children */ 

{      /* Replace with smallest in right subtree */ 

tmp_cell = find_min( T->right ); 

T->element = tmp_cell->element; 

T->right = delete( T->element, T->right ); 

} 

else      /* One child */ 

} 

tmp_cell = T; 

if( T->left == NULL )      /* Only a right child */ 

child = T->right; 

if( T->right == NULL )     /* Only a left child */ 

child = T->left; 

free( tmp_cell ); 

return child; 

} 

return T; 

} 

Figure 4.25 Deletion routine for binary search trees 
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4.3.6. Average-Case Analysis 

Intuitively, we expect that all of the operations of the previous section, except 

make_null, should take O(log n) time, because in constant time we descend a level 

in the tree, thus operating on a tree that is now roughly half as large. Indeed, 

the running time of all the operations, except make_null, is O(d), where d is the 

depth of the node containing the accessed key.  

We prove in this section that the average depth over all nodes in a tree is O(log 

n) on the assumption that all trees are equally likely.  

The sum of the depths of all nodes in a tree is known as the internal path 

length. We will now calculate the average internal path length of a binary search 

tree, where the average is taken over all possible binary search trees.  

Let D(n) be the internal path length for some tree T of n nodes. D(1) = 0. An n-

node tree consists of an i-node left subtree and an (n - i - 1)-node right 

subtree, plus a root at depth zero for 0  i < n. D(i) is the internal path 

length of the left subtree with respect to its root. In the main tree, all these 

nodes are one level deeper. The same holds for the right subtree. Thus, we get 

the recurrence  

D(n) = D(i) + D(n - i -1) + n -1 

If all subtree sizes are equally likely, which is true for binary search trees 

(since the subtree size depends only on the relative rank of the first element 

inserted into the tree), but not binary trees, then the average value of both D

(i) and D(n - i -1) is . This yields  

  

This recurrence will be encountered and solved in Chapter 7, obtaining an average 

value of D(n) = O(n log n). Thus, the expected depth of any node is O(log n). As 

an example, the randomly generated 500-node tree shown in Figure 4.26 has nodes 

at expected depth 9.98.  

It is tempting to say immediately that this result implies that the average 

running time of all the operations discussed in the previous section is O(log n), 

but this is not entirely true. The reason for this is that because of deletions, 

it is not clear that all binary search trees are equally likely. In particular, 

the deletion algorithm described above favors making the left subtrees deeper 

than the right, because we are always replacing a deleted node with a node from 

the right subtree. The exact effect of this strategy is still unknown, but it 

seems only to be a theoretical novelty. It has been shown that if we alternate 

insertions and deletions (n

2

) times, then the trees will have an expected 

depth of . After a quarter-million random insert/delete pairs, the tree 

that was somewhat right-heavy in Figure 4.26 looks decidedly unbalanced (average 
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depth = 12.51). See Figure 4.27.  

  

Figure 4.26 A randomly generated binary search tree 

We could try to eliminate the problem by randomly choosing between the smallest 

element in the right subtree and the largest in the left when replacing the 

deleted element. This apparently eliminates the bias and should keep the trees 

balanced, but nobody has actually proved this. In any event, this phenomenon 

appears to be mostly a theoretical novelty, because the effect does not show up 

at all for small trees, and stranger still, if o(n

2

) insert/delete pairs are 

used, then the tree seems to gain balance!  

  

Figure 4.27 Binary search tree after O(n

2) insert/delete pairs

 

The main point of this discussion is that deciding what "average" means is 

generally extremely difficult and can require assumptions which may or may not be 

valid. In the absence of deletions, or when lazy deletion is used, it can be 

shown that all binary search trees are equally likely and we can conclude that 

the average running times of the operations above are O(log n). Except for 
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strange cases like the one discussed above, this result is very consistent with 

observed behavior.  

If the input comes into a tree presorted, then a series of inserts will take 

quadratic time and give a very expensive implementation of a linked list, since 

the tree will consist only of nodes with no left children. One solution to the 

problem is to insist on an extra structural condition called balance: no node is 

allowed to get too deep.  

There are quite a few general algorithms to implement balanced trees. Most are 

quite a bit more complicated than a standard binary search tree, and all take 

longer on average. They do, however, provide protection against the 

embarrassingly simple cases. Below, we will sketch one of the oldest forms of 

balanced search trees, the AVL tree.  

A second, newer, method is to forego the balance condition and allow the tree to 

be arbitrarily deep, but after every operation, a restructuring rule is applied 

that tends to make future operations efficient. These types of data structures 

are generally classified as self-adjusting. In the case of a binary search tree, 

we can no longer guarantee an O(log n) bound on any single operation, but can 

show that any sequence of m operations takes total time O(m log n) in the worst 

case. This is generally sufficient protection against a bad worst case. The data 

structure we will discuss is known as a splay tree; its analysis is fairly 

intricate and is discussed in Chapter 11.  

4.4. AVL Trees 

An AVL (Adelson-Velskii and Landis) tree is a binary search tree with a balance 
condition. The balance condition must be easy to maintain, and it ensures that 

the depth of the tree is O(log n). The simplest idea is to require that the left 

and right subtrees have the same height. As Figure 4.28 shows, this idea does not 

force the tree to be shallow.  

  

Figure 4.28 A bad binary tree. Requiring balance at the root is not enough. 

Another balance condition would insist that every node must have left and right 

subtrees of the same height. If the height of an empty subtree is defined to be -

1 (as is usual), then only perfectly balanced trees of 2

k

 - 1 nodes would satisfy 

this criterion. Thus, although this guarantees trees of small depth, the balance 

condition is too rigid to be useful and needs to be relaxed.  
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An AVL tree is identical to a binary search tree, except that for every node in 
the tree, the height of the left and right subtrees can differ by at most 1. (The 

height of an empty tree is defined to be -1.) In Figure 4.29 the tree on the left 

is an AVL tree, but the tree on the right is not. Height information is kept for 
each node (in the node structure). It is easy to show that the height of an AVL 
tree is at most roughly 1.44 log(n + 2) - .328, but in practice it is about log(n

+ 1) + 0.25 (although the latter claim has not been proven). As an example, the 

AVL tree of height 9 with the fewest nodes (143) is shown in Figure 4.30. This 
tree has as a left subtree an AVL tree of height 7 of minimum size. The right 
subtree is an AVL tree of height 8 of minimum size. This tells us that the 
minimum number of nodes, N(h), in an AVL tree of height h is given by N(h) = N(h
-1) + N(h - 2) + 1. For h = 0, N(h) = 1. For h = 1, N(h) = 2. The function N(h) 

is closely related to the Fibonacci numbers, from which the bound claimed above 

on the height of an AVL tree follows.  

Thus, all the tree operations can be performed in O(log n) time, except possibly 

insertion (we will assume lazy deletion). When we do an insertion, we need to 

update all the balancing information for the nodes on the path back to the root, 

but the reason that insertion is potentially difficult is that inserting a node 

could violate the AVL tree property. (For instance, inserting  into the AVL
tree in Figure 4.29 would destroy the balance condition at the node with key 8.) 

If this is the case, then the property has to be restored before the insertion 

step is considered over. It turns out that this can always be done with a simple 

modification to the tree, known as a rotation. We describe rotations in the 

following section.  

  

Figure 4.29 Two binary search trees. Only the left tree is AVL. 
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Figure 4.30 Smallest AVL tree of height 9 

4.4.1. Single Rotation  

4.4.2. Double Rotation  

4.4.1. Single Rotation 

The two trees in Figure 4.31 contain the same elements and are both binary search 

trees. First of all, in both trees k

1

 < k

2

. Second, all elements in the subtree X

are smaller than k

1

 in both trees. Third, all elements in subtree Z are larger 

than k

2

. Finally, all elements in subtree Y are in between k

1

 and k

2

. The 

conversion of one of the above trees to the other is known as a rotation. A 

rotation involves only a few pointer changes (we shall see exactly how many 

later), and changes the structure of the tree while preserving the search tree 

property.  

The rotation does not have to be done at the root of a tree; it can be done at 

any node in the tree, since that node is the root of some subtree. It can 

transform either tree into the other. This gives a simple method to fix up an 

AVL tree if an insertion causes some node in an AVL tree to lose the balance 
property: Do a rotation at that node. The basic algorithm is to start at the node 

inserted and travel up the tree, updating the balance information at every node 

on the path. If we get to the root without having found any badly balanced nodes, 

we are done. Otherwise, we do a rotation at the first bad node found, adjust its 

balance, and are done (we do not have to continue going to the root). In many 

cases, this is sufficient to rebalance the tree. For instance, in Figure 4.32, 

after the insertion of the  in the original AVL tree on the left, node 8 
becomes unbalanced. Thus, we do a single rotation between 7 and 8, obtaining the 
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tree on the right.  

  

Figure 4.31 Single rotation 

  

Figure 4.32 AVL property destroyed by insertion of , then fixed by a rotation 

Let us work through a rather long example. Suppose we start with an initially 

empty AVL tree and insert the keys 1 through 7 in sequential order. The first 
problem occurs when it is time to insert key 3, because the AVL property is 
violated at the root. We perform a single rotation between the root and its right 

child to fix the problem. The tree is shown in the following figure, before and 

after the rotation:  

  

To make things clearer, a dashed line indicates the two nodes that are the 

subject of the rotation. Next, we insert the key 4, which causes no problems, but 

the insertion of 5 creates a violation at node 3, which is fixed by a single 

rotation. Besides the local change caused by the rotation, the programmer must 

remember that the rest of the tree must be informed of this change. Here, this 

means that 2's right child must be reset to point to 4 instead of 3. This is easy 

to forget to do and would destroy the tree (4 would be inaccessible).  
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Next, we insert 6. This causes a balance problem for the root, since its left 

subtree is of height 0, and its right subtree would be height 2. Therefore, we 

perform a single rotation at the root between 2 and 4.  

  

The rotation is performed by making 2 a child of 4 and making 4's original left 

subtree the new right subtree of 2. Every key in this subtree must lie between 2 

and 4, so this transformation makes sense. The next key we insert is 7, which 

causes another rotation.  

  

4.4.2. Double Rotation 

The algorithm described in the preceding paragraphs has one problem. There is a 

case where the rotation does not fix the tree. Continuing our example, suppose we 

insert keys 8 through 15 in reverse order. Inserting 15 is easy, since it does 

not destroy the balance property, but inserting 14 causes a height imbalance at 

node 7.  
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As the diagram shows, the single rotation has not fixed the height imbalance. The 

problem is that the height imbalance was caused by a node inserted into the tree 

containing the middle elements (tree Y in Fig. 4.31) at the same time as the 

other trees had identical heights. The case is easy to check for, and the 

solution is called a double rotation, which is similar to a single rotation but 

involves four subtrees instead of three. In Figure 4.33, the tree on the left is 

converted to the tree on the right. By the way, the effect is the same as 

rotating between k

1

 and k

2

 and then between k

2

 and k

3

. There is a symmetric case, 

which is also shown (see Fig. 4.34).  

  

Figure 4.33 (Right-left) double rotation 

  

Figure 4.34 (Left-right) double rotation 

In our example, the double rotation is a right-left double rotation and involves 

7, 15, and 14. Here, k

3

 is the node with key 7, k

1

 is the node with key 15, and 

k

2 

is the node with key 14. Subtrees A, B, C, and D are all empty.  
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Next we insert 13, which requires a double rotation. Here the double rotation is 

again a right-left double rotation that will involve 6, 14, and 7 and will 

restore the tree. In this case, k

3

 is the node with key 6, k

1

 is the node with 

key 14, and k

2 

is the node with key 7. Subtree A is the tree rooted at the node 

with key 5, subtree B is the empty subtree that was originally the left child of 

the node with key 7, subtree C is the tree rooted at the node with key 13, and 

finally, subtree D is the tree rooted at the node with key 15.  

  

If 12 is now inserted, there is an imbalance at the root. Since 12 is not between 

4 and 7, we know that the single rotation will work.  

  

Insertion of 11 will require a single rotation:  
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To insert 10, a single rotation needs to be performed, and the same is true for 

the subsequent insertion of 9. We insert 8 without a rotation, creating the 

almost perfectly balanced tree that follows.  

  

Finally, we insert  to show the symmetric case of the double rotation. 

Notice that  causes the node containing 9 to become unbalanced. Since  

is between 9 and 8 (which is 9's child on the path to , a double rotation 

needs to be performed, yielding the following tree.  
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The reader can verify that any imbalance caused by an insertion into an AVL tree 

can always be fixed by either a single or double rotation. The programming 

details are fairly straightforward, except that there are several cases. To 

insert a new node with key x into an AVL tree T, we recursively insert x into 
the appropriate subtree of T (let us call this T

lr

). If the height of T

lr

 does 

not change, then we are done. Otherwise, if a height imbalance appears in T, we 

do the appropriate single or double rotation depending on x and the keys in T and 

T

lr

, update the heights (making the connection from the rest of the tree above), 

and are done. Since one rotation always suffices, a carefully coded nonrecursive 

version generally turns out to be significantly faster than the recursive 

version. However, nonrecursive versions are quite difficult to code correctly, so 

many programmers implement AVL trees recursively.  

Another efficiency issue concerns storage of the height information. Since all 

that is really required is the difference in height, which is guaranteed to be 

small, we could get by with two bits (to represent +1, 0, -1) if we really try. 

Doing so will avoid repetitive calculation of balance factors but results in some 

loss of clarity. The resulting code is somewhat more complicated than if the 

height were stored at each node. If a recursive routine is written, then speed is 

probably not the main consideration. In this case, the slight speed advantage 

obtained by storing balance factors hardly seems worth the loss of clarity and 

relative simplicity. Furthermore, since most machines will align this to at least 

an 8-bit boundary anyway, there is not likely to be any difference in the amount 

of space used. Eight bits will allow us to store absolute heights of up to 255. 

Since the tree is balanced, it is inconceivable that this would be insufficient 

(see the exercises).  

With all this, we are ready to write the AVL routines. We will do only a partial 

job and leave the rest as an exercise. First, we need the declarations. These are 

given in Figure 4.35. We also need a quick function to return the height of a 

node. This function is necessary to handle the annoying case of a NULL pointer. 

This is shown in Figure 4.36. The basic insertion routine is easy to write, since 
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it consists mostly of function calls (see Fig. 4.37).  

typedef struct avl_node *avl_ptr; 

struct avl_node 

{ 

element_type element; 

avl_ptr left; 

avl_ptr right; 

int height; 

}; 

typedef avl_ptr SEARCH_TREE; 

Figure 4.35 Node declaration for AVL trees 

int 

height( avl_ptr p ) 

{ 

if( p == NULL ) 

return -1; 

else 

return p->height; 

} 

Figure 4.36 Function to compute height of an AVL node 

For the trees in Figure 4.38, s_rotate_left converts the tree on the left to the 

tree on the right, returning a pointer to the new root. s_rotate_right is 

symmetric. The code is shown in Figure 4.39.  

The last function we will write will perform the double rotation pictured in 

Figure 4.40, for which the code is shown in Figure 4.41.  

Deletion in AVL trees is somewhat more complicated than insertion. Lazy deletion 
is probably the best strategy if deletions are relatively infrequent.  

4.5. Splay Trees 

We now describe a relatively simple data structure, known as a splay tree, that 

guarantees that any m consecutive tree operations take at most O(m log n) time. 
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Although this guarantee does not preclude the possibility that any single 

operation might take O(n) time, and thus the bound is not as strong as an O(log 

n) worst-case bound per operation, the net effect is the same: There are no bad 

input sequences. Generally, when a sequence of m operations has total worst-case 

running time of O(m f(n)), we say that the amortized running time is O(f(n)). 

Thus, a splay tree has O(log n) amortized cost per operation. Over a long 

sequence of operations, some may take more, some less.  

Splay trees are based on the fact that the O(n) worst-case time per operation for 

binary search trees is not bad, as long at it occurs relatively infrequently. Any 

one access, even if it takes O(n), is still likely to be extremely fast. The 

problem with binary search trees is that it is possible, and not uncommon, for a 

whole sequence of bad accesses to take place. The cumulative running time then 

becomes noticeable. A search tree data structure with O(n) worst-case time, but a 

guarantee of at most O(m log n) for any m consecutive operations, is certainly 

satisfactory, because there are no bad sequences.  

If any particular operation is allowed to have an O(n) worst-case time bound, and 

we still want an O(log n) amortized time bound, then it is clear that whenever a 

node is accessed, it must be moved. Otherwise, once we find a deep node, we could 

keep performing finds on it. If the node does not change location, and each 

access costs O(n), then a sequence of m accesses will cost O(m  n).  

SEARCH_TREE 

insert( element_type x, SEARCH_TREE T ) 

{ 

return insert1( x, T, NULL ); 

} 

SEARCH_TREE 

insert1( element_type x, SEARCH_TREE T, avl_ptr parent ) 

{ 

avl_ptr rotated_tree; 

if( T == NULL ) 

{  /* Create and return a one-node tree */ 

T = (SEARCH_TREE) malloc ( sizeof (struct avl_node) ); 

if( T == NULL ) 

fatal_error("Out of space!!!"); 

else 

{ 
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T->element = x; T->height = 0; 

T->left = T->right = NULL; 

} 

} 

else 

{ 

if( x < T->element ) 

{ 

T->left = insert1( x, T->left, T ); 

if( ( height( T->left ) - height( T->right ) ) == 2 

{ 

if( x < T->left->element ) 

rotated_tree = s_rotate_left( T ); 

else 

rotated_tree = d_rotate_left( T ); 

if( parent->left == T ) 

parent->left = rotated_tree; 

else 

parent->right = rotated_tree; 

} 

else 

T->height = max( height(T->left), height(T->right) ) + 1; 

} 

else 

/* Symmetric Case for right subtree */; 

/* Else x is in the tree already. We'll do nothing */ 

} 

return T; 

} 
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Figure 4.37 Insertion into an AVL tree 

  

Figure 4.38 

/* This function can be called only if k2 has a left child. */ 

/* Perform a rotate between a node (k2) and its left child. */ 

/* Update heights. */ 

/* Then return new root. */ 

avl_ptr 

s_rotate_left( avl_ptr k2 ) 

{ 

avl_ptr k1; 

k1 = k2->left; 

k2->left = k1->right; 

k1->right = k2; 

k2->height = max( height(k2->left), height(k2->right) ) + 1; 

k1->height = max( height(k1->left), k2->height ) + 1; 

return k1;  /* New root */ 

} 

Figure 4.39 Routine to perform single rotation 

  

Figure 4.40 
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/* This function can be called only if k3 has a left child */ 

/* and k3's left child has a right child */ 

/* Do the left-right double rotation. Update heights */ 

avl_ptr 

d_rotate_left( avl_ptr k3 ) 

{ 

/* rotate between k1 and k2 */ 

k3->left = s_rotate_right( k3->left ); 

/* rotate between k3 and k2 */ 

return( s_rotate_left( k3 ) ); 

} 

Figure 4.41 Routine to perform double rotation 

The basic idea of the splay tree is that after a node is accessed, it is pushed 

to the root by a series of AVL tree rotations. Notice that if a node is deep, 
there are many nodes on the path that are also relatively deep, and by 

restructuring we can make future accesses cheaper on all these nodes. Thus, if 

the node is unduly deep, then we want this restructuring to have the side effect 

of balancing the tree (to some extent). Besides giving a good time bound in 

theory, this method is likely to have practical utility, because in many 

applications when a node is accessed, it is likely to be accessed again in the 

near future. Studies have shown that this happens much more often than one would 

expect. Splay trees also do not require the maintenance of height or balance 

information, thus saving space and simplifying the code to some extent 

(especially when careful implementations are written).  

4.5.1. A Simple Idea (That Does Not Work)  

4.5.2. Splaying  

4.5.1. A Simple Idea (That Does Not Work) 

One way of performing the restructuring described above is to perform single 

rotations, bottom up. This means that we rotate every node on the access path 

with its parent. As an example, consider what happens after an access (a find) on 

k

1

 in the following tree.  
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The access path is dashed. First, we would perform a single rotation between k

1

 

and its parent, obtaining the following tree.  

  

Then, we rotate between k

1

 and k

3

, obtaining the next tree. 

 

  

Then two more rotations are performed until we reach the root.  
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These rotations have the effect of pushing k

1

 all the way to the root, so that 

future accesses on k

1

 are easy (for a while). Unfortunately, it has pushed 

another node (k

3

) almost as deep as k

1

 used to be. An access on that node will 

then push another node deep, and so on. Although this strategy makes future 

accesses of k

1

 cheaper, it has not significantly improved the situation for the 

other nodes on the (original) access path. It turns out that it is possible to 

prove that using this strategy, there is a sequence of m operations requiring 

(m  n) time, so this idea is not quite good enough. The simplest way to 

show this is to consider the tree formed by inserting keys 1, 2, 3, . . . , n 

into an initially empty tree (work this example out). This gives a tree 

consisting of only left children. This is not necessarily bad, though, since the 

time to build this tree is O(n) total. The bad part is that accessing the node 

with key 1 takes n -1 units of time. After the rotations are complete, an access 

of the node with key 2 takes n - 2 units of time. The total for accessing all the 

keys in order is . After they are accessed, the tree reverts to its 

original state, and we can repeat the sequence.  

4.5.2. Splaying 

The splaying strategy is similar to the rotation idea above, except that we are a 

little more selective about how rotations are performed. We will still rotate 

bottom up along the access path. Let x be a (nonroot) node on the access path at 

which we are rotating. If the parent of x is the root of the tree, we merely 

rotate x and the root. This is the last rotation along the access path. 

Otherwise, x has both a parent (p) and a grandparent (g), and there are two 
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cases, plus symmetries, to consider. The first case is the zig-zag case (see Fig. 

4.42). Here x is a right child and p is a left child (or vice versa). If this is 

the case, we perform a double rotation, exactly like an AVL double rotation. 
Otherwise, we have a zig-zig case: x and p are either both left children or both 

right children. In that case, we transform the tree on the left of Figure 4.43 to 

the tree on the right.  

  

Figure 4.42 Zig-zag 

  

Figure 4.43 Zig-zig 

As an example, consider the tree from the last example, with a find on k

1

: 

 

  

The first splay step is at k

1

, and is clearly a zig-zag, so we perform a standard 

AVL double rotation using k
1

, k

2, 

and k

3

. The resulting tree follows.  
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The next splay step at k

1 

is a zig-zig, so we do the zig-zig rotation with k

1

, 

k

4

, and k

5

, obtaining the final tree.  

  

Although it is hard to see from small examples, splaying not only moves the 

accessed node to the root, but also has the effect of roughly halving the depth 

of most nodes on the access path (some shallow nodes are pushed down at most two 

levels).  

  

Figure 4.44 Result of splaying at node 1 

To see the difference that splaying makes over simple rotation, consider again 

the effect of inserting keys 1, 2, 3, . . . , n into an initially empty tree. 

This takes a total of O(n), as before, and yields the same tree as simple 

rotations. Figure 4.44 shows the result of splaying at the node with key 1. The 

difference is that after an access of the node with key 1, which takes n -1 

units, the access on the node with key 2 will only take about n/2 units instead 

of n - 2 units; there are no nodes quite as deep as before.  
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Figure 4.45 Result of splaying at node 1 a tree of all left children 

  

Figure 4.46 Result of splaying previous tree at node 2 

An access on the node with key 2 will bring nodes to within n/4 of the root, and 

this is repeated until the depth becomes roughly log n (an example with n = 7 is 

too small to see the effect well). Figures 4.45 to 4.53 show the result of 

accessing keys 1 through 9 in a 32-node tree that originally contains only left 

children. Thus we do not get the same bad behavior from splay trees that is 

prevalent in the simple rotation strategy. (Actually, this turns out to be a very 

good case. A rather complicated proof shows that for this example, the n accesses 

take a total of O(n) time).  

These figures show off the fundamental and crucial property of splay trees. When 

access paths are long, thus leading to a longer-than-normal search time, the 

rotations tend to be good for future operations. When accesses are cheap, the 

rotations are not as good and can be bad. The extreme case is the initial tree 

formed by the insertions. All the insertions were constant-time operations 

leading to a bad initial tree. At that point in time, we had a very bad tree, but 
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we were running ahead of schedule and had the compensation of less total running 

time. Then a couple of really horrible accesses left a nearly balanced tree, but 

the cost was that we had to give back some of the time that had been saved. The 

main theorem, which we will prove in Chapter 11, is that we never fall behind a 

pace of O(log n) per operation: We are always on schedule, even though there are 

occasionally bad operations.  

Because the rotations for splay trees are performed in pairs from the bottom up, 

a recursive implementation does not work, (although modifications to the splaying 

steps can be made to allow a recursive implementation). The pairs of nodes to 

consider are not known until the length of the path is determined to be even or 

odd. Thus, splay trees are coded nonrecursively and work in two passes. The first 

pass goes down the tree and the second goes back up, performing rotations. This 

requires that the path be saved. This can be done by using a stack (which might 

need to store n pointers) or by adding an extra field to the node record that 

will point to the parent. Neither method is particularly difficult to implement. 

We will provide code for the splaying routine on the assumption that each node 

stores its parent.  

  

Figure 4.47 Result of splaying previous tree at node 3 

  

Figure 4.48 Result of splaying previous tree at node 4 
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Figure 4.49 Result of splaying previous tree at node 5 

  

Figure 4.50 Result of splaying previous tree at node 6 

  

Figure 4.51 Result of splaying previous tree at node 7 

  

Figure 4.52 Result of splaying previous tree at node 8 

  

Figure 4.53 Result of splaying previous tree at node 9 
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The type declarations (Fig. 4.54) are simple to understand. The splaying routine 

(Fig. 4.55) takes as argument the last node on the accessed path and makes it the 

new root. The routines single_rotate and double_rotate choose the correct type of 

rotation. We provide the code for single_rotate in Figure 4.56.  

The rotation routines are similar to the AVL rotations, except that the parent 
pointers must be maintained. Some sample routines are in the figures that follow. 

Since zig rotations always make x the new root, we know that x will have no 

parent after the operation. The code for this is in Figure 4.57.  

Zig-zigs and Zig-zags are similar. We will write the one routine to perform the 

zig-zig splay when both x and p are left children. One way to do this is to write 

a single_rotate routine that includes pointer changes for the parent, and then 

implement the complex rotations with two single rotations. This is the way we 

coded the AVL routines. We have taken a different approach in Figure 4.58 to 
show the diversity of styles available. See Figure 4.59. You should try to code 

the other cases yourself; it will be excellent pointer manipulation practice.  

typedef struct splay_node *splay_ptr; 

struct splay_node 

{ 

element_type element; 

splay_ptr left; 

splay-ptr right; 

splay-ptr parent; 

}; 

typedef splay_ptr SEARCH_TREE; 

Figure 4.54 Type declarations for splay trees 

void 

splay( splay_ptr current ) 

{ 

splay_ptr father; 

father = current->parent; 

while( father != NULL ) 

{ 

if( father->parent == NULL ) 

single_rotate (current ); 
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else 

double_rotate( current ); 

father = current->parent; 

} 

} 

Figure 4.55 Basic splay routine 

void 

single_rotate( splay_ptr x ) 

{ 

if( x->parent->left == x) 

zig_left( x ); 

else 

zig_right( x ); 

} 

Figure 4.56 Single rotation 

void 

zig_left( splay_ptr x ) 

{ 

splay ptr p, B; 

p = x->parent; 

B = x->right; 

x->right = p;      /* x's new right child is p*/ 

x->parent = NULL;  /* x will now be a root */ 

if( B != NULL ) 

B->parent = p; 

p->left = B; 

p->parent = x; 

} 
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Figure 4.57 Single rotation between root and its left child 

We can perform deletion by accessing the node to be deleted. This puts the node 

at the root. If it is deleted, we get two subtrees T

L

 and T

R

(left and right). If 

we find the largest element in T

L

 (which is easy), then this element is rotated 

to the root of T

L

, and T

L

 will now have a root with no right child. We can finish 

the deletion by making T

R

 the right child.  

The analysis of splay trees is difficult, because it must take into account the 

ever-changing structure of the tree. On the other hand, splay trees are much 

simpler to program than AVL trees, since there are fewer cases to consider and 
no balance information to maintain. Our splay tree code may look complicated, but 

as pointed out before, it can be simplified; it is probably much simpler than a 

nonrecursive AVL implementation. Some empirical evidence suggests that this 
translates into faster code in practice, although the case for this is far from 

complete. Finally, we point out that there are several variations of splay trees 

that can perform even better in practice.  

  

Figure 4.58 

void 

zig_zig_left( splay_ptr x ) 

{ 

splay_ptr p, g, B, C, ggp; 

p = x->parent; 

g = p->parent; 

B = x->right; 

C = p->right; 

ggp = g->parent; 

x->right = p;           /* x's new right child is p*/ 

p->parent = x; 

p->right = g;           /* p's new right child is g */ 

g->parent = p; 
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if( B != NULL )         /* p's new left child is subtree B */ 

B->parent = p; 

p->left = B; 

if( C != NULL )         /* g's new left child is subtree C */ 

C->parent = g; 

g->left = C; 

x->parent = ggp;        /* connect to rest of the tree */ 

if( ggp ! = NULL ) 

if( gpp->left == g ) 

ggp->left = x; 

else 

ggp->right = x; 

} 

Figure 4.59 Routine to perform a zig-zig when both children are initially left 

children 

4.6. Tree Traversals (Revisited) 

Because of the ordering information in a binary search tree, it is simple to list 

all the keys in sorted order. The recursive procedure in Figure 4.60 does this.  

Convince yourself that this procedure works. As we have seen before, this kind of 

routine when applied to trees is known as an inorder traversal (which makes 

sense, since it lists the keys in order). The general strategy of an inorder 

traversal is to process the left subtree first, then perform processing at the 

current node, and finally process the right subtree. The interesting part about 

this algorithm, aside from its simplicity, is that the total running time is O

(n). This is because there is constant work being performed at every node in the 

tree. Each node is visited once, and the work performed at each node is testing 

against NULL, setting up two procedure calls, and doing a print_element. Since 

there is constant work per node and n nodes, the running time is O(n).  

void 

print_tree( SEARCH_TREE T ) 

{ 

if( T != NULL ) 

{ 

页码，47/65Structures, Algorithm Analysis: CHAPTER 4: TREES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



print_tree( T->left ); 

print_element( T->element ); 

print_tree( T->right ); 

} 

} 

Figure 4.60 Routine to print a binary search tree in order 

Sometimes we need to process both subtrees first before we can process a node. 

For instance, to compute the height of a node, we need to know the height of the 

subtrees first. The code in Figure 4.61 computes this. Since it is always a good 

idea to check the special cases - and crucial when recursion is involved - notice 

that the routine will declare the height of a leaf to be zero, which is correct. 

This general order of traversal, which we have also seen before, is known as a 

postorder traversal. Again, the total running time is O(n), because constant work 

is performed at each node.  

The third popular traversal scheme that we have seen is preorder traversal. Here, 

the node is processed before the children. This could be useful, for example, if 

you wanted to label each node with its depth.  

The common idea in all of these routines is that you handle the NULL case first, 

and then the rest. Notice the lack of extraneous variables. These routines pass 

only the tree, and do not declare or pass any extra variables. The more compact 

the code, the less likely that a silly bug will turn up. A fourth, less often 

used, traversal (which we have not seen yet) is level-order traversal. In a 

level-order traveresal, all nodes at depth d are processed before any node at 

depth d + 1. Level-order traversal differs from the other traversals in that it 

is not done recursively; a queue is used, instead of the implied stack of 

recursion.  

int 

height( TREE T ) 

{ 

if( T == NULL ) 

return -1; 

else 

return ( max( height(T->left), height(T->right) ) + 1 ); 

} 

Figure 4.61 Routine to compute the height of a tree using a postorder traversal 

4.7. B-Trees 
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Although all of the search trees we have seen so far are binary, there is a 

popular search tree that is not binary. This tree is known as a B-tree.  

A B-tree of order m is a tree with the following structural properties:  

 The root is either a leaf or has between 2 and m children.  

 All nonleaf nodes (except the root) have between m/2  and m children. 

 All leaves are at the same depth.  

All data is stored at the leaves. Contained in each interior node are pointers 

p

1

, p

2

, . . . , p

m

 to the children, and values k

1

, k

2

, . . . , k

m - 1

, 

representing the smallest key found in the subtrees p

2

, p

3

, . . . , p

m

 

respectively. Of course, some of these pointers might be NULL, and the 

corresponding k

i

 would then be undefined. For every node, all the keys in subtree 

p

1

 are smaller than the keys in subtree p

2

, and so on. The leaves contain all the 

actual data, which is either the keys themselves or pointers to records 

containing the keys. We will assume the former to keep our examples simple. There 

are various definitions of B-trees that change this structure in mostly minor 

ways, but this definition is one of the popular forms. We will also insist (for 

now) that the number of keys in a leaf is also between m/2  and m.  

The tree in Figure 4.62 is an example of a B-tree of order 4.  

  

Figure 4.62 B-tree of order 4 

A B-tree of order 4 is more popularly known as a 2-3-4 tree, and a B-tree of 

order 3 is known as a 2-3 tree. We will describe the operation of B-trees by 

using the special case of 2-3 trees. Our starting point is the 2-3 tree that 

follows.  
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We have drawn interior nodes (nonleaves) in ellipses, which contain the two 

pieces of data for each node. A dash line as a second piece of information in an 

interior node indicates that the node has only two children. Leaves are drawn in 

boxes, which contain the keys. The keys in the leaves are ordered. To perform a 

find, we start at the root and branch in one of (at most) three directions, 

depending on the relation of the key we are looking for to the two (possibly one) 

values stored at the node.  

To perform an insert on a previously unseen key, x, we follow the path as though 

we were performing a find. When we get to a leaf node, we have found the correct 

place to put x. Thus, to insert a node with key 18, we can just add it to a leaf 

without causing any violations of the 2-3 tree properties. The result is shown in 

the following figure.  

  

Unfortunately, since a leaf can hold only two or three keys, this might not 

always be possible. If we now try to insert 1 into the tree, we find that the 

node where it belongs is already full. Placing our new key into this node would 

give it a fourth element which is not allowed. This can be solved by making two 

nodes of two keys each and adjusting the information in the parent.  
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Unfortunately, this idea does not always work, as can be seen by an attempt to 

insert 19 into the current tree. If we make two nodes of two keys each, we obtain 

the following tree.  

  

This tree has an internal node with four children, but we only allow three per 

node. The solution is simple. We merely split this node into two nodes with two 

children. Of course, this node might be one of three children itself, and thus 

splitting it would create a problem for its parent (which would now have four 

children), but we can keep on splitting nodes on the way up to the root until we 

either get to the root or find a node with only two children. In our case, we can 

get by with splitting only the first internal node we see, obtaining the 

following tree.  

  

If we now insert an element with key 28, we create a leaf with four children, 

which is split into two leaves of two children:  
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This creates an internal node with four children, which is then split into two 

children. What we have done here is split the root into two nodes. When we do 

this, we have a special case, which we finish by creating a new root. This is how 

(the only way) a 2-3 tree gains height.  

  

Notice also that when a key is inserted, the only changes to internal nodes occur 

on the access path. These changes can be made in time proportional to the length 

of this path, but be forewarned that there are quite a few cases to handle, and 

it is easy to do this wrong.  

There are other ways to handle the case where a node becomes overloaded with 

children, but the method we have described is probably the simplest. When 

attempting to add a fourth key to a leaf, instead of splitting the node into two 

we can first attempt to find a sibling with only two keys. For instance, to 

insert 70 into the tree above, we could move 58 to the leaf containing 41 and 52, 

place 70 with 59 and 61, and adjust the entries in the internal nodes. This 

strategy can also be applied to internal nodes and tends to keep more nodes full. 

The cost of this is slightly more complicated routines, but less space tends to 

be wasted.  

We can perform deletion by finding the key to be deleted and removing it. If this 
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key was one of only two keys in a node, then its removal leaves only one key. We 

can fix this by combining this node with a sibling. If the sibling has three 

keys, we can steal one and have both nodes with two keys. If the sibling has only 

two keys, we combine the two nodes into a single node with three keys. The parent 

of this node now loses a child, so we might have to percolate this strategy all 

the way to the top. If the root loses its second child, then the root is also 

deleted and the tree becomes one level shallower. As we combine nodes, we must 

remember to update the information kept at the internal nodes.  

With general B-trees of order m, when a key is inserted, the only difficulty 

arises when the node that is to accept the key already has m keys. This key gives 

the node m + 1 keys, which we can split into two nodes with  (m + 1) / 2 

and  (m + 1) / 2  keys respectively. As this gives the parent an extra 

node, we have to check whether this node can be accepted by the parent and split 

the parent if it already has m children. We repeat this until we find a parent 

with less than m children. If we split the root, we create a new root with two 

children.  

The depth of a B-tree is at most log m/2 n . At each node on the path, 

we perform O(log m) work to determine which branch to take (using a binary 

search), but an insert or delete could require O(m) work to fix up all the 

information at the node. The worst-case running time for each of the insert and 

delete operations is thus O(m log

m 

n) = O( (m / log m ) log n), but a find takes 

only O(log n ). The best (legal) choice of m for running time considerations has 

been shown empirically to be either m = 3 or m = 4; this agrees with the bounds 

above, which show that as m gets larger, the insertion and deletion times 

increase. If we are only concerned with main memory speed, higher order B-trees, 

such as 5-9 trees, are not an advantage.  

The real use of B-trees lies in database systems, where the tree is kept on a 

physical disk instead of main memory. Accessing a disk is typically several 

orders of magnitude slower than any main memory operation. If we use a B-tree of 

order m, then the number of disk accesses is O(log

m 

n). Although each disk access 

carries the overhead of O(log m) to determine the direction to branch, the time 

to perform this computation is typically much smaller than the time to read a 

block of memory and can thus be considered inconsequential (as long as m is 

chosen reasonably). Even if updates are performed and O(m) computing time is 

required at each node, this too is generally not significant. The value of m is 

then chosen to be the largest value that still allows an interior node to fit 

into one disk block, and is typically in the range 32  m  256. The maximum 

number of elements that are stored in a leaf is chosen so that if the leaf is 

full, it fits in one block. This means that a record can always be found in very 

few disk accesses, since a typical B-tree will have a depth of only 2 or 3, and 

the root (and possibly the first level) can be kept in main memory.  

Analysis suggests that a B-tree will be ln 2 = 69 percent full. Better space 

utilization can be obtained if, instead of always splitting a node when the tree 

obtains its (m + 1)th entry, the routine searches for a sibling that can take the 
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extra child. The details can be found in the references.  

Summary 

We have seen uses of trees in operating systems, compiler design, and searching. 

Expression trees are a small example of a more general structure known as a parse 

tree, which is a central data structure in compiler design. Parse trees are not 

binary, but are relatively simple extensions of expression trees (although the 

algorithms to build them are not quite so simple).  

Search trees are of great importance in algorithm design. They support almost all 

the useful operations, and the logarithmic average cost is very small. 

Nonrecursive implementations of search trees are somewhat faster, but the 

recursive versions are sleeker, more elegant, and easier to understand and debug. 

The problem with search trees is that their performance depends heavily on the 

input being random. If this is not the case, the running time increases 

significantly, to the point where search trees become expensive linked lists.  

We saw several ways to deal with this problem. AVL trees work by insisting that 
all nodes' left and right subtrees differ in heights by at most one. This ensures 

that the tree cannot get too deep. The operations that do not change the tree, as 

insertion does, can all use the standard binary search tree code. Operations that 

change the tree must restore the tree. This can be somewhat complicated, 

especially in the case of deletion. We showed how to restore the tree after 

insertions in O(log n) time.  

We also examined the splay tree. Nodes in splay trees can get arbitrarily deep, 

but after every access the tree is adjusted in a somewhat mysterious manner. The 

net effect is that any sequence of m operations takes O(m log n) time, which is 

the same as a balanced tree would take.  

B-trees are balanced m-way (as opposed to 2-way or binary) trees, which are well 

suited for disks; a special case is the 2-3 tree, which is another common method 

of implementing balanced search trees.  

In practice, the running time of all the balanced tree schemes is worse (by a 

constant factor) than the simple binary search tree, but this is generally 

acceptable in view of the protection being given against easily obtained worst-

case input.  

A final note: By inserting elements into a search tree and then performing an 

inorder traversal, we obtain the elements in sorted order. This gives an O(n log 

n) algorithm to sort, which is a worst-case bound if any sophisticated search 

tree is used. We shall see better ways in Chapter 7, but none that have a lower 

time bound.  

Exercises 

Questions 4.1 to 4.3 refer to the tree in Figure 4.63.  

4.1 For the tree in Figure 4.63 :  
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a. Which node is the root?  

b. Which nodes are leaves?  

  

Figure 4.63 

4.2 For each node in the tree of Figure 4.63 :  

a. Name the parent node.  

b. List the children.  

c. List the siblings.  

d. Compute the depth.  

e. Compute the height.  

4.3 What is the depth of the tree in Figure 4.63?  

4.4 Show that in a binary tree of n nodes, there are n + 1 pointers representing 

children.  

4.5 Show that the maximum number of nodes in a binary tree of height h is 2

h+1

 - 

1.  

4.6 A full node is a node with two children. Prove that the number of full nodes 

plus one is equal to the number of leaves in a binary tree.  

4.7 Suppose a binary tree has leaves l

1

, l

2

, . . . , l

m

 at depth d

1

, d

2

, . . . , 

d

m, 

respectively. Prove that  and determine when the equality is 

true.  

4.8 Give the prefix, infix, and postfix expressions corresponding to the tree in 

Figure 4.64.  
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4.9 a. Show the result of inserting 3, 1, 4, 6, 9, 2, 5, 7 into an initially 

empty binary search tree.  

b. Show the result of deleting the root.  

4.10 Write routines to implement the basic binary search tree operations.  

4.11 Binary search trees can be implemented with cursors, using a strategy 

similar to a cursor linked list implementation. Write the basic binary search 

tree routines using a cursor implementation.  

4.12 Suppose you want to perform an experiment to verify the problems that can be 

caused by random insert/delete pairs. Here is a strategy that is not 

perfectlyrandom, but close enough. You build a tree with n elements by inserting 

n elements chosen at random from the range 1 to m = n. You then perform n

2

 

pairs of insertions followed by deletions. Assume the existence of a routine, 

rand_int(a,b), which returns a uniform random integer between a and b inclusive. 

  

Figure 4.64 Tree for Exercise 4.8 

a. Explain how to generate a random integer between 1 and m that is not already 

in the tree (so a random insert can be performed). In terms of n and , what 

is the running time of this operation?  

b. Explain how to generate a random integer between 1 and m that is already in 

the tree (so a random delete can be performed). What is the running time of this 

operation?  

c. What is a good choice of ? Why?  

4.13 Write a program to evaluate empirically the following strategies for 

deleting nodes with two children:  

a. Replace with the largest node, X, in T

L

 and recursively delete X. 

 

b. Alternately replace with the largest node in T

L

 and the smallest node in T

R

, 
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and recursively delete appropriate node.  

c. Replace with either the largest node in T

L

 or the smallest node in T

R 

(recursively deleting the appropriate node), making the choice randomly. Which 

strategy seems to give the most balance? Which takes the least CPU time to 

process the entire sequence?  

4.14 ** Prove that the depth of a random binary search tree (depth of the deepest 

node) is O(log n), on average.  

4.15 *a. Give a precise expression for the minimum number of nodes in an AVL 
tree of height h.  

b. What is the minimum number of nodes in an AVL tree of height 15?  

4.16 Show the result of inserting 2, 1, 4, 5, 9, 3, 6, 7 into an initially empty 

AVL tree.  

4.17 * Keys 1, 2, . . . , 2

k

 -1 are inserted in order into an initially empty 

AVL tree. Prove that the resulting tree is perfectly balanced.  

4.18 Write the remaining procedures to implement AVL single and double 
rotations.  

4.19 Write a nonrecursive function to insert into an AVL tree.  

4.20 * How can you implement (nonlazy) deletion in AVL trees?  

4.21 a. How many bits are required per node to store the height of a node in an 

n-node AVL tree?  

b. What is the smallest AVL tree that overflows an 8-bit height counter?  

4.22 Write the functions to perform the double rotation without the inefficiency 

of doing two single rotations.  

4.23 Show the result of accessing the keys 3, 9, 1, 5 in order in the splay tree 

in Figure 4.65.  

页码，57/65Structures, Algorithm Analysis: CHAPTER 4: TREES

2006-1-27mk:@MSITStore:K:\Data.Structures.and.Algorithm.Analysis.in.C.chm::/...



  

Figure 4.65 

4.24 Show the result of deleting the element with key 6 in the resulting splay 

tree for the previous exercise.  

4.25 Nodes 1 through n = 1024 form a splay tree of left children.  

a. What is the internal path length of the tree (exactly)?  

*b. Calculate the internal path length after each of find(1), find(2), find(3), 

find(4), find(5), find(6).  

*c. If the sequence of successive finds is continued, when is the internal path 

length minimized?  

4.26 a. Show that if all nodes in a splay tree are accessed in sequential order, 

the resulting tree consists of a chain of left children.  

**b. Show that if all nodes in a splay tree are accessed in sequential order, 

then the total access time is O(n), regardless of the initial tree.  

4.27 Write a program to perform random operations on splay trees. Count the total 

number of rotations performed over the sequence. How does the running time 

compare to AVL trees and unbalanced binary search trees?  

4.28 Write efficient functions that take only a pointer to a binary tree, T, and 

compute  

a. the number of nodes in T  

b. the number of leaves in T  

c. the number of full nodes in T  

What is the running time of your routines?  

4.29 Write a function to generate an n-node random binary search tree with 

distinct keys 1 through n. What is the running time of your routine?  
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4.30 Write a function to generate the AVL tree of height h with fewest nodes. 
What is the running time of your function?  

4.31 Write a function to generate a perfectly balanced binary search tree of 

height h with keys 1 through 2

h+1

 - 1. What is the running time of your function?

4.32 Write a function that takes as input a binary search tree, T, and two keys 

k

1

 and k

2

, which are ordered so that k

1

  k

2

, and prints all elements x in the 

tree such that k

1

  key(x)  k

2

. Do not assume any information about the 

type of keys except that they can be ordered (consistently). Your program should 

run in O(K + log n) average time, where K is the number of keys printed. Bound 

the running time of your algorithm.  

4.33 The larger binary trees in this chapter were generated automatically by a 

program. This was done by assigning an (x, y) coordinate to each tree node, 

drawing a circle around each coordinate (this is hard to see in some pictures), 

and connecting each node to its parent. Assume you have a binary search tree 

stored in memory (perhaps generated by one of the routines above) and that each 

node has two extra fields to store the coordinates.  

a. The x coordinate can be computed by assigning the inorder traversal number. 

Write a routine to do this for each node in the tree.  

b. The y coordinate can be computed by using the negative of the depth of the 

node. Write a routine to do this for each node in the tree.  

c. In terms of some imaginary unit, what will the dimensions of the picture be? 

How can you adjust the units so that the tree is always roughly two-thirds as 

high as it is wide?  

d. Prove that using this system no lines cross, and that for any node, X, all 

elements in X's left subtree appear to the left of X and all elements in X's 

right subtree appear to the right of X.  

4.34 Write a general-purpose tree-drawing program that will convert a tree into 

the following graph-assembler instructions:  

a. circle(x, y)  

b. drawline(i, j)  

The first instruction draws a circle at (x, y), and the second instruction 

connects the ith circle to the jth circle (circles are numbered in the order 

drawn). You should either make this a program and define some sort of input 

language or make this a function that can be called from any program. What is the 

running time of your routine?  

4.35 Write a routine to list out the nodes of a binary tree in level-order. List 

the root, then nodes at depth 1, followed by nodes at depth 2, and so on. You 

must do this in linear time. Prove your time bound.  
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4.36 a. Show the result of inserting the following keys into an initially empty 

2-3 tree: 3, 1, 4, 5, 9, 2, 6, 8, 7, 0.  

b. Show the result of deleting 0 and then 9 from the 2-3 tree created in part 

(a).  

4.37 *a. Write a routine to perform insertion from a B-tree.  

*b. Write a routine to perform deletion from a B-tree. When a key is deleted, is 

it necessary to update information in the internal nodes?  

  

Figure 4.66 Tree for Exercise 4.39 

*c. Modify your insertion routine so that if an attempt is made to add into a 

node that already has m entries, a search is performed for a sibling with less 

than m children before the node is split.  

4.38 A B*-tree of order m is a B-tree in which each each interior node has 

between 2m/3 and m children. Describe a method to perform insertion into a B*-

tree.  

4.39 Show how the tree in Figure 4.66 is represented using a child/sibling 

pointer implementation.  

4.40 Write a procedure to traverse a tree stored with child/sibling links.  

4.41 Two binary trees are similar if they are both empty or both nonempty and 

have similar left and right subtrees. Write a function to decide whether two 

binary trees are similar. What is the running time of your program?  

4.42 Two trees, T

1

 and T

2

, are isomorphic if T

1

 can be transformed into T

2

 by 

swapping left and right children of (some of the) nodes in T

1

. For instance, the 

two trees in Figure 4.67 are isomorphic because they are the same if the children 

of A, B, and G, but not the other nodes, are swapped.  

a. Give a polynomial time algorithm to decide if two trees are isomorphic.  

*b. What is the running time of your program (there is a linear solution)?  

4.43 *a. Show that via AVL single rotations, any binary search tree T
1

 can be 

transformed into another search tree T

2

 (with the same keys).  
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*b. Give an algorithm to perform this transformation using O(n log n) rotations 

on average.  

**c. Show that this transformation can be done with O(n) rotations, worst-case.  

  

Figure 4.67 Two isomorphic trees 

4.44 Suppose we want to add the operation find_kth to our repertoire. The 

operation find_kth(T,i) returns the element in tree T with i

th

 smallest key. 

Assume all elements have distinct keys. Explain how to modify the binary search 

tree to support this operation in O(log n) average time, without sacrificing the 

time bounds of any other operation.  

4.45 Since a binary search tree with n nodes has n + 1 pointers, half the space 

allocated in a binary search tree for pointer information is wasted. Suppose that 

if a node has a left child, we make its left child point to its inorder 

predecessor, and if a node has a right child, we make its right child point to 

its inorder successor. This is known as a threaded tree and the extra pointers 

are called threads.  

a. How can we distinguish threads from real children pointers?  

b. Write routines to perform insertion and deletion into a tree threaded in the 

manner described above.  

c. What is the advantage of using threaded trees?  

4.46 A binary search tree presupposes that searching is based on only one key per 

record. Suppose we would like to be able to perform searching based on either of 

two keys, key

1

 or key

2

.  

a. One method is to build two separate binary search trees. How many extra 

pointers does this require?  

b. An alternative method is a 2-d tree. A 2-d tree is similar to a binary search 

tree, except that branching at even levels is done with respect to key

1

, and 

branching at odd levels is done with key

2

. Figure 4.68 shows a 2-d tree, with the 

first and last names as keys, for post-WWII presidents. The presidents' names 

were inserted chronologically (Truman, Eisenhower, Kennedy, Johnson, Nixon, Ford, 

Carter, Reagan, Bush). Write a routine to perform insertion into a 2-d tree.  

c. Write an efficient procedure that prints all records in the tree that 
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simultaneously satisfy the constraints low

1

  key

1

  high

1

 and low

2

  key

2

 high

2

. 

 

d. Show how to extend the 2-d tree to handle more than two search keys. The 

resulting strategy is known as a k-d tree.  

  

Figure 4.68 A 2-d tree 
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